12th Maths Formulas List
12th Maths Formulas List PDF read online or download for free from the vthometutor.com link given at the bottom of this article.
Areas
Square | ![]() | A=l2 | l : length of side |
Rectangle | ![]() | A=w×h | w : width h : height |
Triangle | ![]() | A=b×h2 | b : base h : height |
Rhombus | ![]() | A=D×d2 | D : large diagonal d : small diagonal |
Trapezoid | ![]() | A=B+b2×h | B : large side b : small side h: height |
Regular polygon | ![]() | A=P2×a | P : perimeter a : apothem |
Circle | ![]() | A=πr2 P=2πr | r : radius P : perimeter |
Cone (lateral surface) | ![]() | A=πr×s | r : radius s : slant height |
Sphere (surface area) | ![]() | A=4πr2 | r: radius |
Volumes
Cube | ![]() | V=s3V=s3 | ss: side |
Parallelepiped | ![]() | V=l×w×hV=l×w×h | ll: length ww: width hh: height |
Regular prism | ![]() | V=b×hV=b×h | bb: base hh: height |
Cylinder | ![]() | V=πr2×hV=πr2×h | rr: radius hh: height |
Cone (or pyramid) | ![]() | V=13b×hV=13b×h | bb: base hh: height |
Sphere | ![]() | V=43πr3V=43πr3 | rr: radius |
Functions and Equations
Directly Proportional | y=kxy=kx k=yxk=yx | kk: Constant of Proportionality |
Inversely Proportional | y=kxy=kx k=yxk=yx | |
ax2+bx+c=0ax2+bx+c=0 | Quadratic formula | x=−b±b2−4ac−−−−−−−√2ax=-b±b2-4ac2a |
Concavity | Concave up: a>0a>0 | |
Concave down: a<0a<0 | ||
Discriminant | Δ=b2−4acΔ=b2-4ac | |
Vertex of the parabola | V(−b2a,−Δ4a)V(-b2a,-Δ4a) | |
y=a(x−h)2+ky=a(x-h)2+k | Concavity | Concave up: a>0a>0 |
Concave down: a<0a<0 | ||
Vertex of the parabola | V(h,k)V(h,k) | |
Zero-product property | A×B=0⇔A=0∨B=0A×B=0⇔A=0∨B=0 | ex : (x+2)×(x−1)=0⇔(x+2)×(x-1)=0⇔ x+2=0∨x−1=0⇔x=−2∨x=1x+2=0∨x-1=0⇔x=-2∨x=1 |
Difference of two squares | (a−b)(a+b)=a2−b2(a-b)(a+b)=a2-b2 | ex : (x−2)(x+2)=x2−22=x2−4(x-2)(x+2)=x2-22=x2-4 |
Perfect square trinomial | (a+b)2=a2+2ab+b2(a+b)2=a2+2ab+b2 | ex : (2x+3)2=(2x)2+2⋅2x⋅3+32=(2x+3)2=(2x)2+2⋅2x⋅3+32= 4x2+12x+94×2+12x+9 |
Binomial theorem | (x+y)n=∑k=0nnCkxn−kyk |
Probability and Sets
Commutative | A∪B=B∪AA∪B=B∪A | A∩B=B∩AA∩B=B∩A |
Associative | A∪(B∪C)=A∪(B∪C)A∪(B∪C)=A∪(B∪C) | A∩(B∩C)=A∩(B∩C)A∩(B∩C)=A∩(B∩C) |
Neutral element | A∪∅=AA∪∅=A | A∩E=AA∩E=A |
Absorbing element | A∪E=EA∪E=E | A∩∅=∅A∩∅=∅ |
Distributive | A∪(B∩C)=(A∪B)∩(A∪C)A∪(B∩C)=(A∪B)∩(A∪C) | A∩(B∪C)=(A∩B)∪(A∩C)A∩(B∪C)=(A∩B)∪(A∩C) |
De Morgan’s laws | A∩B¯¯¯¯¯¯¯¯¯=A¯¯¯∪B¯¯¯A∩B¯=A¯∪B¯ | A∪B¯¯¯¯¯¯¯¯¯=A¯¯¯∩B¯¯¯A∪B¯=A¯∩B¯ |
Laplace laws | P(A)=Number of ways it can happenTotal number of outcomesP(A)=Number of ways it can happenTotal number of outcomes | |
Complement of an Event | P(A¯¯¯)=1−P(A)P(A¯)=1-P(A) | |
Union of Events | P(A∪B)=P(A)+P(B)−P(A∩B)P(A∪B)=P(A)+P(B)-P(A∩B) | |
Conditional Probability | P(A∣B)=P(A∩B)P(B)P(A∣B)=P(A∩B)P(B) | |
Independent Events | P(A∣B)=P(A)P(A∣B)=P(A) | P(A∩B)=P(A)×P(B)P(A∩B)=P(A)×P(B) |
Permutation | Pn=n!=n×(n−1)×…×2×1Pn=n!=n×(n-1)×…×2×1 | ex : P4=4!=4×3×2×1=24P4=4!=4×3×2×1=24 |
Permutations without repetition | nAp=n!(n−p)!nAp=n!(n-p)! | ex : 6A2=6!(6−2)!=306A2=6!(6-2)!=30 |
Permutations with repetition | nA′p=npnAp′=np | ex : 5A′3=53=1255A3′=53=125 |
Combination | nCp=nApp!=n!(n−p)!×p!nCp=nApp!=n!(n-p)!×p! | ex : 5C4=5A44!=55C4=5A44!=5 |
Probability Distribution | Average value | μ=x1p1+x2p2+…+xkpkμ=x1p1+x2p2+…+xkpk |
Standard deviation | σ=∑i=1kpi(xi−μ)2−−−−−−−−−−−−⎷σ=∑i=1kpi(xi-μ)2 | |
Binomial distribution | P(X=k)=nCk.pk.(1−p)n−kP(X=k)=nCk.pk.(1-p)n-k | ex : B(10;0,6)B(10;0,6) P(X=3)=10C3×0,63×0,47P(X=3)=10C3×0,63×0,47 |