Reduced Syllabus JEE Mains 2024
NTA has released the JEE Mains Syllabus 2024 PDF for the Academic Session 202425 and you can directly download it from the link given at the bottom of this page. The JEE (Main) – 2024 will be conducted in two Sessions i.e. Session 1 (January 2024) and Session 2 (April 2024).
The Joint Entrance Examination (JEE (Main) comprises two papers. Paper 1 (B.E./B.Tech.) is conducted for admission to Undergraduate Engineering Programs (B.E/B. Tech) at NITs, IIITs, other Centrally Funded Technical Institutions (CFTIs), Institutions/Universities funded/recognized by participating State Governments. It is also an eligibility test for JEE (Advanced), which is conducted for admission to IITs. Paper 2 is conducted for admission to B. Arch and B. Planning courses in the Country.
JEE Mains Complete Syllabus 2024
PHYSICSUNIT 1: PHYSICS AND MEASUREMENT Units of Measurement, System of Units, S I Units, fundamental and derived units, least count, significant figures, errors in measurement, Dimensions of Physics quantities, dimensional analysis, and its applications. UNIT 2: KINEMATICS The frame of reference, motion in a straight line, Position time graph, speed and velocity; Uniform and nonuniform motion, average speed and instantaneous velocity, uniformly accelerated motion, velocitytime, positiontime graph, relations for uniformly accelerated motion, Scalars and Vectors, Vector. Addition and subtraction, zero vector, scalar and vector products, Unit Vector, Resolution of a Vector. Relative Velocity, Motion in a plane, Projectile Motion, Uniform Circular Motion. UNIT 3: LAWS OF MOTION Force and inertia, Newton’s First law of motion; Momentum, Newton’s Second Law of motion, Impulses; Newton’s Third Law of motion. Law of conservation of linear momentum and its applications. Equilibrium of concurrent forces. Static and Kinetic friction, laws of friction, rolling friction. Dynamics of uniform circular motion: centripetal force and its applications, vehicle on a circular road, vehicle on a banked road UNIT 4: WORK, ENERGY, AND POWER Work done by a content force and a variable force; kinetic and potential energies, workenergy theorem, power. The potential energy of spring conservation of mechanical energy, conservative and non conservative forces; motion in a vertical circle; Elastic and inelastic collisions in one and two dimensions. UNIT 5: ROTATIONAL MOTION Centre of the mass of a twoparticle system, Centre of the mass of a rigid body; Basic concepts of rotational motion; a moment of a force; torque, angular momentum, conservation of angular momentum and its applications; the moment of inertia, the radius of gyration. Values of moments of inertia for simple geometrical objects, parallel and perpendicular axes theorems, and their applications. Equilibrium of Rigid bodies, Rigid body rotation equations of rotational motion, comparison of linear and rotational motions. UNIT 6: GRAVITATION The universal law of gravitation. Acceleration due to gravity and its variation with altitude and depth. Kepler’s law of planetary motion. Gravitational potential energy; gravitational potential. Escape velocity, Motion of a Satellite, Orbital velocity of a satellite. Time Period and Energy of A Satellite. UNIT 7: PROPERTIES OF SOLIDS AND LIQUIDS Elastic behaviour, Stressstrain relationship, Hooke’s Law. Young’s modulus, bulk modulus, modulus of rigidity. Pressure due to a fluid column; Pascal’s law and its applications. Effect of gravity on fluid pressure. Viscosity. Stokes’ law. terminal velocity, streamline, and turbulent flow. Critical velocity, Bernoulli’s principle and its applications. Surface energy and surface tension, angle of contact, excess of pressure across a curved surface, application of surface tension – drops, bubbles, and capillary rise. Heat, temperature, thermal expansion; specific heat capacity, calorimetry; change of state, latent heat. Heat transferconduction, convection, and radiation. UNIT 8: THERMODYNAMICS Thermal equilibrium, zeroth law of thermodynamics, the concept of temperature. Heat, work, and internal energy. The first law of thermodynamics, isothermal and adiabatic processes. The second law of thermodynamics: reversible and irreversible processes. UNIT 9: KINETIC THEORY OF GASES Equation of state of a perfect gas, work done on compressing a gas, Kinetic theory of gases – assumptions, the concept of pressure. Kinetic interpretation of temperature: RMS speed of gas molecules: Degrees of freedom. Law of equipartition of energy, applications to specific heat capacities of gases; Mean free path. Avogadro’s number. UNIT 10: OSCILLATIONS AND WAVES Oscillations and Periodic motion – time period, frequency, displacement as a function of time. Periodic functions. Simple harmonic motion (S.H.M.) and its equation; phase: oscillations of a spring restoring force and force constant: energy in S.H.M. – Kinetic and potential energies; Simple pendulum – derivation of expression for its time period: Wave motion. Longitudinal and transverse waves, speed of the travelling wave. Displacement relation for a progressive wave. Principle of superposition of waves, a reflection of waves. Standing waves in strings and organ pipes, fundamental mode and harmonics. UNIT 11: ELECTROSTATICS Electric charges: Electric Charge, Conservation of charge. Coulomb’s law forces between two point charges, forces between multiple charges: superposition principle and continuous charge distribution. Electric field: Electric field due to a point charge, Electric field lines. Electric dipole, Electric field due to a dipole. Torque on a dipole in a uniform electric field. Electric flux. Gauss’s law and its applications to find fields due to infinitely long uniformly charged straight wire, uniformly charged infinite plane sheet, and uniformly charged thin spherical shell. Electric potential and its calculation for a point charge, electric dipole and system of charges; Equipotential surfaces, Electrical potential energy of a system of two point charges in an electrostatic field. Conductors and insulators. Dielectrics and electric polarisation, capacitors and capacitances, the combination of capacitors in series and parallel, capacitance of a parallel plate capacitor with and without dielectric medium between the plates. Energy stored in a capacitor. UNIT 12: CURRENT ELECTRICITY Electric current. Drift velocity, mobility, and their relation with electric current. Ohm’s law. Electrical resistance. Vl characteristics of Ohmic and nonohmic conductors. Electrical energy and power. Electrical resistivity and conductivity. Series and parallel combinations of resistors; Temperature dependence of resistance. Internal resistance, potential difference and emf of a cell, a combination of cells in series and parallel. Kirchhoff’s laws and their applications. Wheatstone bridge. Metre Bridge. UNIT 13: MAGNETIC EFFECTS OF CURRENT AND MAGNETISM Biot – Savart law and its application to current carrying circular loop. Ampere’s law and its applications to infinitely long current carrying straight wire and solenoid. Force on a moving charge in uniform magnetic and electric fields. Force on a currentcarrying conductor in a uniform magnetic field. The force between two parallel currents carrying conductorsdefinition of ampere. Torque experienced by a current loop in a uniform magnetic field: Moving coil galvanometer, its current sensitivity, and conversion to ammeter and voltmeter. Current loop as a magnetic dipole and its magnetic dipole moment. Bar magnet as an equivalent solenoid, magnetic field lines; Magnetic field and magnetic dipole (bar magent) along its axis and perpendicular to the axis. Para, dia and ferromagnetic substances with examples. The effect of temperature on magnetic properties. UNIT 14: ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS Electromagnetic induction: Faraday’s law. Induced emf and current: Lenz’s Law, Eddy currents. Self and mutual inductance. Alternating currents, peak and RMS value of alternating current/ voltage: reactance and impedance: LCR series circuit, resonance: power in AC circuits, wattless current. AC generator and transformer. UNIT 15: ELECTROMAGNETIC WAVES Displacement Current. Electromagnetic waves and their characteristics, Transverse nature of electromagnetic waves, Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet. Xrays. Gamma rays), Applications of e.m. waves. UNIT 16: OPTICS Reflection of light, spherical mirrors, mirror formula. Refraction of light at plane and spherical surfaces, thin lens formula, and lens maker formula. Total internal reflection and its applications. Magnification. Power of a Lens. Combination of thin lenses in contact. Refraction of light through a prism. Microscope and Astronomical Telescope (reflecting and refracting ) and their magnifying powers. Wave optics: wavefront and Huygens’ principle. Laws of reflection and refraction using Huygens principle. Interference, Young’s doubleslit experiment and expression for fringe width, coherent sources, and sustained interference of light. Diffraction due to a single slit, width of central maximum. Polarisation, planepolarised light: Brewster’s law, uses of planepolarised light and Polaroid. UNIT 17: DUAL NATURE OF MATTER AND RADIATION Dual nature of radiation. Photoelectric effect. Hertz and Lenard’s observations; Einstein’s photoelectric equation: particle nature of light. Matter waveswave nature of particles, de Broglie relation. UNIT 18: ATOMS AND NUCLEI Alphaparticle scattering experiment; Rutherford’s model of atom; Bohr model, energy levels, hydrogen spectrum. Composition and size of nucleus, atomic masses, Massenergy relation, mass defect; binding energy per nucleon and its variation with mass number, nuclear fission, and fusion. UNIT 19: ELECTRONIC DEVICES Semiconductors; semiconductor diode: 1V characteristics in forward and reverse bias; diode as a rectifier; IV characteristics of LED. the photodiode, solar cell, and Zener diode; Zener diode as a voltage regulator. Logic gates (OR. AND. NOT. NAND and NOR). UNIT 20: EXPERIMENTAL SKILLS Familiarity with the basic approach and observations of the experiments and activities:
